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This article can be considered as an extension of the paper of Fukagata et al. [Phys. Fluids 14, L73
(2002)] which derived an analytical expression for the constituent contributions to skin friction in a
turbulent channel, pipe, and plane boundary layer flows. In this paper, we extend the theoretical
analysis of Fukagata et al. (formerly limited to canonical cases with two-dimensional mean flow) to
a fully three-dimensional situation allowing complex wall shapes. We start our analysis by
considering arbitrarily shaped surfaces and then formulate a restriction on a surface shape for which
the current analysis is valid. A theoretical formula for skin friction coefficient is thus given for
streamwise and spanwise homogeneous surfaces of any shape, as well as some more complex
configurations, including spanwise-periodic wavy patterns. The theoretical analysis is validated
using the results of large eddy simulations of a turbulent flow over straight and wavy riblets with
triangular and knife-blade cross-sections. Decomposition of skin friction into different constituent
contributions allows us to analyze the influence of different dynamical effects on a skin friction

modification by riblet-covered surfaces. © 2009 American Institute of Physics.

[doi:10.1063/1.3241993]

I. INTRODUCTION

Accurate estimation of skin friction coefficient is re-
quired for determining skin friction drag on a body moving
relative to a fluid. The negative impact of skin friction drag
on performance and efficiency of practical engineering de-
vices is responsible for the past and present quest for skin
friction drag reduction methods. As a result, a great deal of
experimental and computational data has been generated
over the past several decades concerning skin friction and the
ways to reduce it, and a number of various skin friction
reduction methods have been proposed.1

It is now understood that turbulent flows have higher
skin friction than their laminar counterparts due to the inter-
action of coherent near-wall turbulent structures or
quasistreamwise vortices with the surface.” Quasistreamwise
vortices pump a high-speed fluid toward the wall during the
turbulent sweep events, thus increasing the local shear rate
and, ultimately, the skin friction.> Reduction in this interac-
tion would generally lead to a lower skin friction, and vari-
ous passive and active skin friction reduction methods are
attempting to alter the near-wall turbulence in one way or
another in order to achieve this reduction. Wall blowing and
suction, or opposition control of turbulence, prevents the
downwash of high-speed fluid toward the wall during sweep
events;4’5 riblets®” and  microbubbles® displace the
quasistreamwise vortices away from the wall, so that the
vortex-surface interaction is reduced; spanwise-wall
oscillation”'? breaks the coherence between the streamwise
vortices and the low-speed streaks, thus weakening the near-
wall burst activity and reducing skin friction.

However, in spite of the extensive literature on skin fric-
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tion drag reduction, most of the conclusions are drawn based
on hypothetical arguments relating the measured/calculated
skin friction coefficient to the observed flow features. A clear
understanding of the contribution of different dynamical ef-
fects to skin friction, based on theoretical analysis, is lack-
ing. Fukagata et al."" derived an analytical expression relat-
ing the local skin friction coefficient to the properties of the
flow above the surface for canonical cases of plane turbulent
channel flow, pipe flow, and flat plate boundary layer. They
used their analysis to explain skin friction modification by
opposition control and uniform wall blowing/suction. Their
approach was subsequently applied to analyze skin friction
reduction by near-wall turbulence manipulation at high
Reynolds numbers'? and by superhydrophobic surfaces.” In
addition, this analysis was recently extended to include com-
pressible effects on skin friction in turbulent channel flow,
pipe flow, and flat plate boundary layer at supersonic Mach
numbers.

Recently, Sbragaglia and Sugiyama15 proposed an ana-
Iytical expression for a skin friction drag on a surface as a
function of the volume integral of the velocity field without
assuming any particular shape of the surface or flow
homogeneity. They used the derived expression to analyze
drag modification of the flow in a plane channel with mixed-
slip boundary conditions at small Reynolds numbers
[Re~O(1)], as compared to the creeping flow solution. Al-
though the relation proposed in Ref. 15 can be applied to
three-dimensional geometries, it is given in a very general
form, without spelling out specific expressions for different
dynamical contributions, which is done in Refs. 11 and 14,
but only for quasi-two-dimensional cases.

In the present paper, we extend the theoretical analysis
of Fukagata et al. H (formerly limited to canonical cases with
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FIG. 1. Schematics of a flow over an arbitrarily shaped surface.

two-dimensional mean flow) to a fully three-dimensional
case of complex wall shapes, giving exact closed-form ex-
pressions for different dynamical contributions into a skin
friction (bulk, asymmetric, turbulent, etc.). The proposed
generalization allows us to treat analytically laminar and tur-
bulent flows in configurations involving geometrical surface
modification, as it occurs with the use of riblets®’ or wall
deforming actuators in active flow control.™'® Tt should be
noted that unlike in Refs. 11 and 15, we confine our attention
to the flows with zero wall velocity. Although this condition
can be relaxed to account for effects of wall transpiration or
slip, this is not the subject of the present paper.

In Sec. II, we present the details of the derivation of the
closed-form expression relating the skin friction coefficient
to the statistical information of the flow in a case of three-
dimensional wall shapes. We start our analysis by consider-
ing arbitrarily shaped surfaces and then formulate a restric-
tion on the surface shape for which the current analysis is
valid. In Sec. III, we use the derived expression to analyze
the modification of skin friction by straightﬁ‘7 and Wavy17
riblets with two different types of cross-section: triangular
and knife-blade. Statistical flow information needed for the
analytical expression is obtained from large eddy simulations
(LESs). The skin friction coefficient obtained from the ana-
lytical expression is compared to the directly computed
value. The derived expression—allowing us to decompose
skin friction coefficient into the sum of bulk, asymmetric,
and turbulent components, provides better understanding of
the mechanism of skin friction modification by straight and
wavy riblets. In the present paper, we do not consider the
pressure drag, which is nonzero for wavy riblets and needs to
be included in the total drag estimation.'®

II. MATHEMATICAL FORMULATION
A. Skin friction coefficient

Consider a flow over an arbitrarily shaped surface as
depicted in Fig. 1. A Cartesian coordinate system (x,y,z) is
introduced, where x axis is aligned with the direction of in-
coming flow, y axis is parallel to the mean surface normal,
and z axis is in the spanwise direction.

The local force that acts on a surface at a particular point
consists of shear and pressure forces

F==[u(V® T+ (V®d))|i-P,il, (1)

where w is the fluid viscosity, =(u,v,w) is the velocity
vector, P is the pressure, 7i is the outward pointing local
surface normal of the unit length, and the subscript w stands
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for the quantities evaluated at the wall. Dimensional vari-
ables will be denoted with the superscript * throughout the
paper. However, since all the variables are dimensional in
Sec. II A, we will skip the superscript * in this section for
the sake of brevity. In this paper, we derive an analytical
formulation for the skin friction only, and therefore we will
only look at the shear force. Pressure drag is not considered
in this paper. Local shear force is

Fo=—u(Ve7+(Ve )|, )

and x-component of F o defines local skin friction drag

>

Fg== (V@i +(Veo))|i- i, 3)

where i is the unit vector in x direction. It can be shown (see
Appendix A) that local skin friction drag can be expressed as

(au avn)
Fo=—p |7+t

s 4
on  dx @

w

where u is the streamwise velocity component and v, is the
velocity component in the direction of a local surface
normal.

Let us consider the second contribution to Fy,
—u(dv,/dx)|,, and show that it is identically zero. First, we
show that the gradient of any velocity component at the wall
is aligned with the local surface normal. Consider a local
coordinate system with the basis (7,7, 7,), where 7| and 7,
axes are tangential to the surface, and n axis is aligned with
the local surface normal. In this coordinate system, the gra-
dient is written as

v,
+ 7, (5)

where v; is any arbitrary velocity component. At the wall,
v;],,=0 due to the no-slip conditions, and so do its tangential
derivatives: (dv;/dm)|,,=0 and (dv,/d7,)|,=0. This leaves
the gradient at the wall a

(7v,-

Vui,= —| 7, 6
vhy= St i ©)

w

which is in the direction of the local surface normal. Since
the gradient is invariant under orthogonal transformations, its
value and direction will remain the same when expressed in
the original (x,y,z) coordinate system.

Second, we express dv,,/ dx through the velocity gradient
Vv, as

Jdu,
ox

= an : l?’ (7)

and using Eq. (6) we get that at the wall

i (8)

w

v,
ox

v,
on

w

Finally, we go back to the local coordinate system (7,7, 7>)
and look at the continuity equation at the wall in this local
coordinate system (which is also invariant under orthogonal
transformations),
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Jv Jv Jv
(—TI+—”+—TZ)|W=O. 9)
aT on  Jdn

As already noted before, derivatives of any velocity compo-
nent in the tangential directions 7; and 7, are zero at the wall,
and therefore the normal derivative of the normal velocity
component is also zero at every point at the wall

Jdu,

Dl _p. 10

| (10)
transforming Eq. (8) into

Jdu,

— =0 11

ox |, ()

and proving that the second contribution to the local skin
friction drag is identically zero.
Thus, local skin friction drag can be written as

P ( o"u)
a=— M on
and its nondimensional counterpart, the skin friction coeffi-
cient defined as

(12)

’
w

Fq

Ci=——3, 13
T 1npu? (13)
is therefore expressed as
2 du
C=- 1 (—) , (14)
pU.” \dn/ |,

where p is the density and U is the reference velocity.

B. Expression for the normal derivative

To derive an analytical expression for C; given by Eq.
(14), one needs to estimate the normal derivative of stream-
wise velocity at the wall (du/dn),,. To do that in a general
case of a turbulent flow, we start by evoking the Reynolds-
averaged nondimensionalized momentum equation in the
streamwise direction for an incompressible flow,

du  duun) Juv) uw)
—+ + +

ot ox dy dz

P (70, e 7

-—+ + +
dx Re\ox®> ady* 97

du'u") dw'v') Iu'w")
ax dy 0z

: (15)

A bar over variables denotes mean quantities, and a prime—
the fluctuating components. Averages are defined as en-
semble means; they are, in general, time dependent. Veloci-
ties are normalized by the characteristic velocity U”, spatial
coordinates are normalized by the characteristic length L,
Re=U"L*/v" is the Reynolds number of the flow, and v* is
the kinematic viscosity. Throughout the rest of the paper,
superscript ™ denotes dimensional variables, and variables
without * are nondimensional ones. Note that with the above

Phys. Fluids 21, 105105 (2009)

N AR
Y

Imaginary top
Z / surface
5. s

FIG. 2. Schematics of a cross-section 2, at a streamwise location x.

normalization and averaging Eq. (14) for skin friction coef-
ficient will read

I7 Rel? \on

where U, is nondimensional reference velocity U,=U"/U".
Nondimensional reference velocity U, accounts for the pos-
sible difference between representative velocity U’ in the
definition of C; [Eqs. (13) and (14)] and characteristic veloc-
ity U* used for nondimensionalization of governing equa-
tions. Rearranging some terms, we rewrite Eq. (15) as

(16)

s
w

(17)

where [, is the sum of the convective terms and streamwise
turbulent and viscous stresses

— 9wy oG@w) daw) du'u') 1 Pu
I, = + + + -—

, (18
ax dy 9z ax Re dx> (18)

and 7,, Z are the crossflow turbulent and viscous terms,
respectively,

_ W) o)

1, , 19
= p (19)
I = L(az_ﬁ + ,92_,;> (20)
" Re\dy? 922)

To proceed, we integrate Eq. (17) at each streamwise loca-
tion x over the cross-section % shown in Fig. 2. Cross-section
3 is the y-z cross-section of the flow volume at a given
streamwise location and represents the area occupied by the
flow between the wall and an imaginary flat surface, which is
perpendicular to the vertical axis and located far enough
from the wall so that the flow at that location can be consid-
ered uniform. Such an imaginary surface would, for ex-
ample, correspond to the edge of a boundary layer or to a
channel center plane. Side boundaries of the cross-section 3,
are chosen to be parallel to the y axis. The lateral spacing
between the side boundaries is denoted by s. Please note that
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in the general case both 3 and s are functions of the stream-
wise coordinate x. Integrating Eq. (17) over 2 gives

JJ(T 1)dydz = JJ(T op a—ﬁ)dd (1)
s t+v yz__z X+ﬁx+ﬁl yaz.

Using the Gauss—Ostrogradski theorem for the left-hand side
of Eq. (21), we obtain

fflidydz:% (u'v’f+u’w'l€)-ﬁ2d'y=§ u'v) dy,
s s P

(22)
ffl_dd 1 (&ﬁ? &ﬁ]g) y
=—— —j+—k|-a
sJ yox ReJ s (9yj 9z =Y
1 it
=-—¢ ——dy (23)
Re J 55 dns

In Egs. (22) and (23), d% is the contour of the cross-sectional
area X, iy is the in-plane outward pointing unit normal of the
contour J%, and j and k are the unit vectors in y and z
directions, respectively. Throughout this paper y denotes the
local variable along the contour of integration, i.e., the length
of the contour in Cartesian system from the start of integra-
tion to the local point and d7y denotes the differential of the
contour length. Notice that the contour §% consists of three
segments: a wall segment, a top segment corresponding to
imaginary flat surface, and side segments. To proceed fur-
ther, we formulate the boundary conditions on these three
segments.

(1) Wall segment

No slip: u=v=w=0,
(24)
u'=v'=w'=0.
(2) Top segment
Uniform flow: du/dy=0,
(25)
u'=v'=w'=0
(3) Side segments
Periodicity:  (dit/dz), = (9 dz),,
(26)

r_ r_
UV =0V,, W;=W,.

u/ =u,
For the wall and the top segments, specified boundary
conditions hold for any surface (due to viscosity effects
and particular choice of a top boundary). For the side
segments, we assume periodicity conditions that are
valid when a surface consists of a spanwise-periodic ar-
ray of identical fragments resulting in the same flow
properties on the fragment side boundaries (subscripts [
and r refer to the left and right boundaries, respectively).
Note that uniform flow conditions and symmetry condi-

tions at side boundaries, both characterized by
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ouldz=0, u'=v'=w'=0, (27)

are particular cases of periodicity conditions. Uniform
flow conditions at side boundaries are valid if the wall
shape approaches that of a flat plate at its spanwise ends,
so that there are no end effects. Symmetry conditions at
side boundaries are valid if the cross-sectional shape of
the wall is symmetric and there are no other conditions
violating the flow symmetry (such as nonzero spanwise
velocity at the side segments, etc.). It can be easily seen
that with the above boundary conditions the contour in-
tegral in the right-hand side of Eq. (22) is identically
zero at all three segments (for the side boundaries with
periodicity conditions the left and right integrals cancel
each other),

3€ u'v, dy=0. (28)
) *

The contour integral in the right-hand side of Eq. (23) is
zero everywhere except at the wall segment d2.,,,

u u
3€ —dy:% —dv. (29)
s ons i, Ins

Therefore, combining Egs. (21)-(29), we can express
the integral of the normal derivative of streamwise ve-
locity dit/ dns over the wall segment J%,, as

1 Ji — 9P dn
_— —dy=- I.+—+—|dydz. (30)
Re s, (91’12 s ox ot

Equation (30) is almost what we need to compute the
skin friction coefficient from Eq. (16), except for the follow-
ing mismatch. Derivative diz/ dns in Eq. (30) is with respect
to iy, which is the in-plane normal to the contour J% at a
given point. However, derivative dit/dn in Eq. (16) is with
respect to 77, which is the normal to the original three-
dimensional surface at the same point. Contour 2, lies in the
y-z plane, and so does 7is (see Fig. 2). However, surface
normal 77 might not be oriented in the y-z plane. In other
words, we can view 7is as the orthogonal projection of 77 onto
y-z plane (with its magnitude adjusted to correspond to the
unit length). We can relate dit/ dns to dit/ dn at the wall using
the fact that the gradient of any velocity component at the
wall is aligned with the local surface normal [Eq. (6)] and the
fact that

.
Vi is. (31)
5}12

We can write that at the wall

u

on

Lo u
n-ny= 5

du

cos B, (32)

w

(9}’12 w w

where B is the angle between the surface normal 7 and its
orthogonal projection onto the y-z plane, 7is. Substituting Eq.
(32) into Eq. (30) gives
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! il B(y)d f.f<7+aﬁ+&ﬁ>zd
- ——COoS = -+ .
mtﬁ& year= s Tax )P

(33)

C. Allowable surfaces

Since cos 3 is a function of the contour variable vy in the
general case, it is not possible to obtain an uncoupled expres-
sion for dit/ dn in the general case. Therefore, in what follows
we will only consider surfaces for which cos f is not a func-
tion of 7, but constant along J%,, for every cross-section 3.
We will give some examples of surfaces which satisfy this
requirement.

Class 1: Streamwise-homogeneous surfaces: surfaces
whose shape does not depend on x and which can be param-
etrized by a function F(y,z)=0. In this case, 77 and its y-z
projection 7is will be identical, =0 and cos B=1.

Class 2: Spanwise-homogeneous surfaces: surfaces
whose shape does not depend on z and which can be param-
etrized by a function F(x,y)=0. Then 7i will not be identical
to 7s. But an angle 8 between 77 and 775 will not depend on z
and, since the y-coordinates of the points on a wall segment
d2.,, will not depend on z either, the angle 8 will be the same
for every y and z at a corresponding point on a wall segment
d3,,,; therefore, cos B will be constant along any wall seg-
ment 3,

Class 3: Quasistreamwise-homogeneous surfaces: if a
streamwise-homogeneous surface is modified in a way such
that any arbitrary y-z cross-section is translated along the z
axis by any arbitrary distance, then angle 8 will be the same
along the wall segment d2,,, for a given x, since every infini-
tesimal surface element is rotated by the same angle from its
original location for a given x. Surfaces modified in this way
still possess nonvarying y-z cross-sectional shape, but they
are not strictly streamwise homogeneous, since dependence
on X NOW exists.

Besides the surfaces described above, there can be other
surfaces which satisfy the requirement cos S=const along
each d%,,. Generally, if we have a surface defined by a func-
tion F(x,y,z)=0, then a surface normal at a point (x,y,z) is
given by the gradient of F, i=(F,,F,,F,), and its projection
to the y-z plane by a vector 7/ix=(0,F,,F,). Note that in this
formulation 77 and 7y do not necessarily have unit length.
The cosine of the angle between the two vectors is given by

n- nz

i | Fl+F 34)
|W@| Fi+Fi+F2

and, therefore, surfaces for which cos 8 is constant along
J%,, can be generally defined as surfaces for which the fol-
lowing condition holds:

F24+ F?
m =const for x=const. (35)

Note that except for the condition of constant cos 3 defined
by Eq. (35), surfaces under consideration should also guar-
antee that the flow boundary conditions (26) are satisfied on
side boundaries with the incoming flow parallel to the x axis.

cos B=
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If a particular surface is such that only Eq. (35) is satisfied,
but not Eq. (26), a new surface should be constructed con-
sisting of a spanwise-periodic array of the given surface frag-
ments, so that periodicity flow conditions on side boundaries
are valid.

D. Spanwise-averaged coefficient

When cos B(y)=const along §%,,, Eq. (33) can be re-

written as
- Cos —dy= +— + — |dydz.
'BReﬁg(?ny ff( t)yz
(36)
It follows from Eq. (16) that
1 on . U* —
—_— —d’y: —Scfz, (37)
ReJs dn 2

where Efz is the spanwise-averaged skin friction coefficient
defined as

_ 1 _
Cix,0) = —f Cx,z,0)dy. (38)
SJos,

Therefore, Eq. (36) reads

Ufs cos B— — 9P i
chz=— IX+O_’—+E dydz. (39)
s X

Multiplication of Eq. (39) by 1/As, where Ay is the area of
the cross-section 2, its subsequent subtraction from Eq. (17)
results in the following expression for a spanwise-averaged
skin friction coefficient:

— 2As
i B I+I + F” 40
4 Ufscos ( ) “0)
where
. OP" ou"
F"=1x+a—+g (41)
X

and

_ 1 _
f(x,y,2,0) = f(x,y,2,1) _A_zfz ff(x,y,z,t)dydz. (42)

E. Constituent contributions

To obtain the relation for the constituent contributions of
different dynamical effects to the skin friction coefficient,
Fukagata et al."! in their analysis of a homogeneous case of
a plane channel flow applied triple integration of the form
Jody[3dy[dy to the expression for the skin friction coeffi-
cient corresponding to Eq. (40) in our case (y=0 and y=1
signified the bottom wall and the channel center plane, re-
spectively, in their normalization). With the three-
dimensional shape of the wall, the situation is a little bit
more complicated, and a line integration [dy should be re-
placed by a surface integration [[dydz over elementary sur-
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FIG. 3. Schematic of an orthogonal body-fitted curvilinear coordinate sys-
tem (7,).

faces within 3. To ensure orthogonality, an integration has to
be performed along the gridlines corresponding to the or-
thogonal body-fitted curvilinear coordinate system (7, ).
Notice that we do not switch coordinate systems, Navier—
Stokes equations are not modified, all distances are calcu-
lated in the Cartesian coordinate system, and functions
7(y,z),{(y,z) are merely used to define elementary surfaces
of integration. A schematic of an orthogonal body-fitted cur-
vilinear coordinate system is shown in Fig. 3. Note that the
wall is represented by 7=0, the top surface by #= 7", and
the side boundaries by {={; and {={,, respectlvely.

To proceed with our analysis, we integrate Eq. (40) over
elementary surfaces o(7,{), which, at every streamwise lo-
cation x, are defined as (see Fig. 3)

a(7,0) ={(y,2):n(y,2) € (0,7),{(y,2) € ({,{+d))}.
(43)

To integrate Eq. (40) over o(7,{), we write

2As
J f dydz— {f f(l +I)dydz
sco B
+J fF”dydz}. (44)

The left-hand side of Eq. (44) can be reduced to
J fafzdydz=afsza, (45)

where dA, is the area of an elementary surface o. For the
first term in the right-hand side of Eq. (44), we can again use
the Gauss—Ostrogradski theorem and transform

u
JJ(I +I)dydz—§ u'v) d‘y——jg —dy. (46)
do Re do 01’10

To extract the skin friction coefficient out of Eq. (46), we
write the contour integral in the last term in that equation as
the sum of integrals over the wall segment do,,, top segment
da,, and side segments do of the integration contour do,

Phys. Fluids 21, 105105 (2009)

1 i d 1 f o J f it J
N o AN ou
" Re ’= " Re oo, Mo 4 g, On 4

t

du
+f —dy]. (47)
dog ano

Following Egs. (16) and (32) and using the fact that we are
considering the surfaces where cos B=const along d%,,, the
integral of dit/ dn,, over the wall segment do,, can be related
to the skin friction coefficient as follows. Let us introduce
the weight function w(+y) as the ratio of the local skin friction
coefficient C((y) at a location y along the wall segment J2.,,
to the spanwise-averaged skin friction coefficient C/ at a
given streamwise coordinate x and a given time 7,

iy
wiy) =L (48)
¢
Then the first term in the right-hand side of Eq. (47) can be
written as

1
-— —dy——cos,B f —dy

ReJ s, Ing
U? cos —

U cos B—
=———C7F| wydy (49)
2 do,,
With the use of Egs. (46), (47), and (49), the integration
over an elementary area o, defined by Eq. (44), results in the
following relation:

EfZL <W(7)d7 i)

1 2 f du
U s cos B| Re dograo, Mo

+ f f (= 2F")dydz + f (= 2u'v, )dy:| )
o do+do, v

(50)

The fact that u" =v’=w"=0 at the wall was used to transform
an integral 95,,(,u’v,’lrd7 into an integral [ ﬁ(,SJr,,Utu’v,;”dy in
Eq. (50). ‘

The next step is to apply double integration of the form
177 dyf7dy to Eq. (50). Finally, we let d{ in the definition of
elementary surfaces o, Eq. (43), be infinitesimally small and
sum over all d{. It is easy to see that the contributions from
the side segments do, cancel each other during the summa-
tion. Transformation of all the terms of Eq. (50) under the
procedure of double integration along # and summation over
d{ is derived in Appendix B. As a result, one gets the fol-
lowing formula for the spanwise-averaged skin friction coef-
ficient in a turbulent flow over any three-dimensional surface
which satisfies Egs. (26) and (35),
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Ez(x,t)=—(Tb+T+T+T +7), (51)
/ U As cos B anore e

where A, 7,, (7,+7,+7,), and 7, are defined by Egs.
(B1)—(B4) of the Appendix B, respectively. A in the normal-
ization term is a function of a cross-sectional shape and a
spanwise skin friction distribution w(+y). Note that all terms
in Eq. (51) except for U, are functions of the streamwise
coordinate x in a general case. 7, corresponds to the bulk
contribution, 7,—the asymmetric contribution, 7,—the pres-
sure contribution, 7,—the transient contribution, and 7,—the
turbulent contribution into the skin friction.

lll. APPLICATION OF THE FORMULA

In this section, we will show some examples of the ap-
plication of the derived expression for the skin friction coef-
ficient, Eq. (51), to realistic flows. This will serve a dual
purpose of validating the formula and demonstrating its util-
ity in extracting new information about the flow.

A. Plane channel flow

A necessary step for validating any general-purpose for-
mula is to check whether it reduces to its simpler counterpart
in the limiting case. Fukagata et al. 1 provided an expression
for a local skin friction coefficient as a function of statistical
flow information for a plane turbulent channel flow. In this
paragraph, we apply Eq. (51), derived for the case of geo-
metrically complex surfaces, to a plane channel flow. We
assume that the channel has a width s, its bottom wall is
located at y=0, and its center plane corresponding to the top
imaginary surface is located at y=4. Since the plane surface
is a streamwise-homogeneous surface, S=0 and cos B=1.
Then Eq. (51) reduces to

CF(x.) = Cilx.z.0)

3 | 20,8,
U’8| Re

S5 " S
+f (5—y)2(— o )dy+f (6-y)*
0 ox 0

4 ‘S
X(_ﬁi>dy+f (5—y)(—2ﬁ)dy}. (52)
ot 0

S
J (8=y)A(=I)dy
0

We used the fact that Ay = ds and the flow is homogeneous in
the spanwise direction, giving C{y)=C#, w(y)=1, and,
therefore,

/2 5 1 52
A=J J (5—y)—(1—X)dydz=—. (53)
270 S o 3

Equation (52) coincides exactly with Eq. (11) of Fukagata
et al."! derived for the plane channel flow, if one substitutes
6=1, U,=U,=1/2, Re=Re,, corresponding to the normal-
ization used in Ref. 11. However, notice the difference in
notation concerning the constituent contributions into the
skin friction with Ref. 11. What Fukagata et al." call the
“laminar term” [the first term in Egs. (51) and (52)] is called
the “bulk term” in the present paper, and what they call the
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“inhomogeneous term” [the second term in Egs. (51) and
(52)], we call the “asymmetric term.” The reasons for the
change in notation are the following. If we look at the skin
friction coefficient in a laminar flow, then for a steady plane
channel flow it will be equal to the first term in Egs. (51) and
(52), since all other terms will be identically zero. This fact
probably made Fukagata et al."" call the first term in Egs.
(51) and (52) the laminar term. However, for a laminar flow
over nonhomogeneous surfaces, the second term will not
necessarily be zero (which will be shown later in this paper).
So, the first term will not be the only contribution into the
laminar skin friction for nonhomogeneous surfaces. That is
why we thought that it would be misleading to call the first
term in Egs. (51) and (52) the laminar term and change the
terminology as compared to Ref. 11. The second term in Egs.
(51) and (52) (called inhomogeneous term by Fukagata
et al.“) was also renamed to the asymmetric term, since
inhomogeneity contributes to all the terms in Eq. (51) in a
geometrically complex case, and not just to the second term,
through streamwise-dependent functions A, s, and cos B in
the denominator. The name “asymmetric” reflects the fact
that this term is identically zero if the flow at the correspond-
ing spanwise cross-section is symmetric with respect to the
cross-sectional axis of symmetry, and is nonzero if the flow
is asymmetric, as discussed below in more details.

B. Surface riblets
1. Geometry definition

Riblet-covered surfaces are used because they exhibit
lower skin friction drag in a turbulent flow than a flat sur-
face. A three-dimensional as well as transverse view of a
riblet-covered surface underneath a flat surface is shown in
Fig. 4. In the present paper, we look at riblets with triangular
and knife-blade cross-sections. Both types of riblet cross-
section together with some basic parameters defining the
cross-sectional geometry are shown in Fig. 5. The orthogonal
body-fitted curvilinear coordinate system (7,¢) utilized for
performing integrations in Egs. (B1)—(B4) is also shown for
reference. For both triangular and knife-blade riblets, analyti-
cal formulas for the transformation from a Cartesian coordi-
nate system (y,z) into a curvilinear orthogonal system (7, {)
are provided by Bechert and Bartenwerfer'® and represent a
series of conformal mappings from a surface inside a rectan-
gular channel onto a surface inside a polygon. For triangular
riblets, y=0 corresponds to the midpoint between a valley
and a tip, and for knife-blade riblets it corresponds to the
bottom part of the riblet surface, so that the cross-sectional
area Ay =0s for both types of cross-section.

We investigate both straight and wavy riblets. Straight
riblets represent straight lines if viewed from above, while
wavy riblets represent sinusoidal waves, see Fig. 6, charac-
terized by the function

2
Az(x)=a sin( %x) , (54)
where Az(x) is the deviation of the spanwise coordinate of

the wavy riblet surface from the corresponding spanwise co-
ordinate of the straight riblet surface, a is the oscillation
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FIG. 4. Riblet geometry. Three-dimensional and transverse view. (a) Trian-
gular riblets. (b) Knife-blade riblets.

amplitude, and N\ is the oscillation wavelength. Note that the
dependence of cross-sectional geometry on the streamwise
coordinate is absent for both straight and wavy riblets.
Straight riblets belong to the Class 1 surfaces
(streamwise-homogeneous surfaces) in the classification of
Sec. IT C. Triangular wavy riblets belong to the Class 3 sur-
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FIG. 5. Cross-sectional shape of riblets. Orthogonal body-fitted curvilinear
coordinate system (7,¢) is also shown. (a) Triangular cross-section. (b)
Knife-blade cross-section.

faces in this classification (quasistreamwise-homogeneous
surfaces). Note that in this case the angle B(x) defined as

Bx) = arctan(ﬂh) (55)
dx

(see Fig. 6) is the same angle which enters Eq. (51) for the
skin friction coefficient and represents the angle between the
local surface normal and its orthogonal projection onto the
y-z plane. For knife-blade riblets, however, the situation is
slightly different, since the riblet surface contains segments
which are flat planes perpendicular to the y axis. When a
spanwise oscillation is introduced to the knife-blade riblet
surface, the side segments become tilted with respect to the x
direction, so that the angle between the local surface normal
7 and its y-z projection iy becomes equal to S, as in the case
of wavy riblets with other cross-sections (triangular, scal-
loped, etc.). However, for the bottom segments (which are
flat planes perpendicular to the y axis even after the spanwise
oscillation is introduced) the local surface normal 7 is
aligned with the y axis and therefore with 75, resulting in
B=0 for the bottom segments. Therefore, the condition of
constant cos 3 along the wall segment d%,,, of the y-z cross-
sections 3 will generally not hold for wavy knife-blade rib-
lets. However, in the present investigation we only consider
small amplitudes in Eq. (54) resulting in small angles 3 (be-
low 9.6° for knife-blade riblets), so that the value of
(1/cos B) does not exceed 1.015, and uncertainties coming
from the condition of nonconstant 3 are not expected to ex-
ceed 1.5%. Note that the assumption of Eq. (55), used
throughout the rest of the paper, is exact for straight knife-
blade riblets and for straight and wavy triangular riblets.

2. Parameter A

To estimate the parameter A entering the normalization
term in Eq. (51), one needs to evaluate Eq. (B1) at a local
cross-section 2. There are two components which influence
the value of A: the shape of the cross-section and the span-

)

z (b) 5

—
c
S

(@ "%

FIG. 6. Comparison between straight and wavy riblets. View of the riblet-
covered surface from above. (a) Straight riblets. (b) Wavy riblets.
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wise distribution of skin friction along the wall w(+y). Cross-
sectional shape is the geometrical parameter of the problem
and is known a priori. However, the spanwise distribution of
the skin friction coefficient ratio along the wall w(y)
=C{y)/C# is generally unknown for the case of a turbulent
flow over complex surfaces. In order to be able to predict the
skin friction coefficient according to Eq. (51), in spite of the
fact that we do not know the exact distribution of w(vy)
a priori, we approximate w(y) for a turbulent flow over
straight or wavy riblets as the spanwise distribution of the
skin friction coefficient ratio in a laminar flow over straight
riblets with the same cross-section. As was shown by
Bechert and Bartenwerfer,19 for a viscous laminar flow over
straight riblets without pressure gradient, the governing
equations reduce to the Laplace equation for the streamwise
velocity u,

Fu Fu
S+ 5=0 (56)
dy® 0z
The authors of Ref. 19 show that since arbitrary functions
f(z+1y) are solutions of the Laplace equation (56), distribu-
tion of the laminar velocity u# over a particular riblet surface
can be obtained by mapping uniform Couette shear flow
above a smooth plane surface onto that above the particular
riblet surface. In other words, when the orthogonal curvilin-
ear grid (7,{) depicted in Fig. 3 is constructed for a riblet
surface by a conformal transformation from a Cartesian
channel grid, the lines 7=const represent the lines of con-
stant velocity u, and the lines {=const represent the force
lines, i.e., the lines between which the constant shear force is
transmitted, see Ref. 19. This means that the product
CAy)dy will be constant between each two neighboring ¢
grid lines of an orthogonal curvilinear grid along d%,,. The
beauty of this fact is that we can now find the spanwise
distribution of the skin friction coefficient ratio w(vy) in a
laminar flow over straight riblets from the relation

CAy)dy=const= sEfZ — (57)
H-4
from which it follows that
d¢ s
w(y) = —. (58)
H-40idy

This allows to simplify Eq. (B1) as

& (4® ( d¢  dA )
- topy _ _ o d ,
A LIL [ )'y(n)]gz_g1 A )

(59)

and A becomes solely a function of the cross-sectional ge-
ometry. Note again that Eq. (59) for evaluating A is an exact
consequence of a general equation (B1) for laminar
streamwise-homogeneous flows while it is an approximation
for turbulent flows and nonstreamwise-homogeneous flows.
Nonetheless, since our intention for developing a theoretical
expression for skin friction coefficient was to come up with
the predictive formula, Eq. (59) is used for evaluating .4
throughout Sec. III B, and not the original Eq. (B1), since
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FIG. 7. (Color online) Spanwise distribution of skin friction coefficient ratio
w(y). , Straight riblets laminar flow, Eq. (58); @, straight riblets turbu-
lent flow, LES (“straight T” and “straight B” cases in Table I); A, wavy
riblets turbulent flow, LES (“short waves T and “short waves B” cases in
Table 1). (a) Triangular riblets. (b) Knife-blade riblets.

Eq. (B1) requires a priori knowledge of skin friction coeffi-
cient ratio and Eq. (59) does not.

Spanwise distribution of the skin friction coefficient ra-
tio w(vy) for straight and wavy riblets in a turbulent flow
computed with LES method was compared a posteriori with
the theoretical value of w(vy) for straight riblets in a laminar
flow given by Eq. (58) to estimate the extent of inaccuracy
introduced by approximating w(+y) in turbulent and nonho-
mogeneous flows by its laminar homogeneous counterpart
for calculating A. The results of this comparison are plotted
in Fig. 7(a) for triangular riblets and in Fig. 7(b) for knife-
blade riblets versus y/L,,, where L,, is the length of the wall
segment §2,,,. The exact geometry of the calculated cases is
defined later in the paper (Table I). We see that for turbulent
flow over straight riblets the spanwise distribution of the skin
friction coefficient is very close to the laminar distribution
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TABLE I. Geometrical parameters for the calculated cases.

@ Bunax

Case (deg) (deg) s/ 6 hls ald N/ &S st h* a* N

Straight T 60 0 0.1164 0.866 0 0 21 18 0 0
Short waves T 60 11.3 0.1164 0.866 0.1 3.22 21 18 18 580
Long waves T 60 11.3 0.1164 0.866 0.19 6 21 18 34 1080
Straight B 90 0 0.0908 0.5 0 0 16 8 0 0
Short waves B 90 9.6 0.0908 0.5 0.085 3.22 16 8 15 580
Long waves B 90 9.6 0.0908 0.5 0.16 6 16 8 28 1080

calculated from Eq. (58) both in triangular and knife-blade
cases. For wavy surfaces the scatter is a bit higher, especially
in the triangular case, due to a streamwise variation in the
flow. Nonetheless, a streamwise-averaged value of w(y) is
close to the theoretical laminar value of Eq. (58). Therefore,
replacing the exact equation (B1) with Eq. (59) for evaluat-
ing A in order to achieve predictive capabiliity introduces
only a very slight approximation. In both triangular and
knife-blade cases, the maximum of C;/C/ occurs at the rib-
let tip (y/L,,=0.5), and the minimum of Ef/ Ffz occurs at the
riblet valley (y/L,,=0,1 for triangular riblets and /L,
=0.25,0.75 for knife-blade riblets).

3. Surface-averaged skin friction coefficient

Since wavy riblet geometry exhibits periodicity in
streamwise direction, we further integrate Eq. (51) in x over
the oscillation wavelength N\, which leads to

= 1 T, T,
Cr=—; dx + dx
UiAs\| Jy cos B o cos B

MT
+
J; cos B
6] 77!°p
7,= f f [H7P) = W) (= I )dv(md L), (61)
g Y0

L e,

(62)

7, and 7, are defined by Eqs. (B2) and (B4), as previously,
CTf represents a surface-averaged skin friction coefficient, and

dx | = C?fb + Ffa + CT% (60)

where

" &(uv) &(uw)
xr= 9z

Cbe, CTfa, and CTf, denote bulk, asymmetric, and turbulent con-
tributions to the surface-averaged skin friction coefficient,
respectively. To arrive at Egs. (60)—(62), periodicity in x di-
rection was exploited leading to the disappearance of the
terms containing streamwise derivatives d/ dx during integra-
tion over the period A. Note that for the disappearance of the
pressure term 7;,, we do not need to assume the absence of a
mean flow pressure gradient, but only periodicity of its inho-
mogeneous part

_ 1ff_
P'=P-— Pdydz
AsJs

[cf. Egs. (B3) and (42)]. We also used an assumption of
stationary mean flow leading to the disappearance of the
transient term 7, and the independence of x of s and A [ A
is evaluated with Eq. (59)]. For straight riblets, we use the
length of the computational domain in the streamwise direc-
tion L, as the period of integration A.

To investigate the behavior of the skin friction coeffi-
cient in a turbulent flow over riblet surfaces using Eq. (60),
large eddy simulations were performed for the case of
straight and wavy riblets with triangular and knife-blade
cross-sections. Simulations were set up in a channel, whose
bottom wall was covered with riblets and the top wall was
flat, please refer to Fig. 4 for the sketch of computational
geometry. We use U'=U, and L*= 5" for normalization, and
we set Reynolds number Re=U, 5°/ v*=2730. Here U, is the
bulk velocity and & is the channel half-width defined in Fig.
4 (superscript * for dimensional variables is omitted in Fig.
4). Geometrical parameters for the calculated cases are listed
in Table I and numerical grid parameters are listed in Table
II. “T” stands for triangular and “B” for knife-blade riblets in
these and subsequent tables. For the cross-sectional shape of
the riblets we chose a geometry which has been optimized

(63)

TABLE II. Numerical grid parameters for the calculated cases.

Case L/é§ L/ Lt Lt N, XN, XN, AxtX Ayt X Azt

Straight T 3.22 0.9312 580 168 16 X 64X 128 36X (0.4-14)%x1.32
Short waves T 3.22 0.9312 580 168 16 X 64X 128 36X (0.4-14) X 1.32
Long waves T 6 0.9312 1080 168 32X 64X 128 33X (0.4-14) % 1.32
Straight B 3.22 0.7264 580 131 16X 64 X128 36X (0.4—14) X 1.03
Short waves B 3.22 0.7264 580 131 16X 64 X128 36X (0.4-14) X 1.03
Long waves B 6 0.7264 1080 131 32X 64X 128 33X (0.4-14) X 1.03
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FIG. 8. Transverse view of the numerical grid. (a) Triangular riblets. (b)
Knife-blade riblets.

for skin friction reduction with straight riblets.” The size of
the computational domain was chosen based on the recom-
mendations of Choi e al.”® who performed direct numerical
simulation (DNS) of straight triangular riblets with the simi-
lar Reynolds number Re=2800. The spanwise extent of the
present computational domain is one-half times larger than a
minimal flow unit of Jiménez and Moin®' to allow for the
possible increase in the streak spacings due to riblets. The
spanwise extent of the domain allows for the simulation of
eight riblets, and riblet-averaged results are presented. The
resolution is equal to the DNS resolution of Ref. 20 in
streamwise and spanwise directions, and it is only slightly
lower in vertical direction, where Van Driest®> wall functions
are used. A transverse view of the numerical grid in the vi-
cinity of the riblets is shown in Fig. 8 for both triangular and
knife-blade riblet surfaces. We employ the incompressible
formulation of the CODE_SATURNE (Ref. 23) to perform the
simulations. CODE_SATURNE is an unstructured fully conser-
vative finite-volume code of second order accuracy in time
and space. The Smagorinsky24 model is used as a subgrid-
scale turbulence model. Further details of the simulations can
be found in Peet e al.”® The present simulations were vali-
dated for the case of a turbulent plane channel flow in Peet
et al”® (versus DNS of Abe et al.’’) and for the case of a
turbulent channel flow whose bottom wall was covered with
straight triangular riblets in Peet et al. » (versus DNS of Choi
et al.”®).

The theoretical value of the surface-averaged skin fric-

tion coefficient C_‘f‘h given by Eq. (60) was evaluated using
statistical flow information taken from LES, while the nor-
malization parameter A was calculated using Eq. (59). Simu-
lations were not performed on curvilinear orthogonal grids,
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but on rectilinear grids shown in Fig. 8, and LES data were
interpolated from the numerical grids of Fig. 8 to the curvi-
linear orthogonal grids of Fig. 5 in order to perform integra-
tions in Egs. (61) and (B4) for asymmetric and turbulent
terms. We can also compute the skin friction coefficient di-
rectly as

= 2 du
o= f f A, (64)
ReUshJ, J dn

where A, is the wall surface. We use the bulk velocity U, as
the reference velocity U, in Egs. (60) and (64).
Both theoretical and computed values of skin friction

coefficient as well as their relative difference 45=(CTf°°mp

- C_‘f‘h)/ C_‘fcomp are listed in Table III. We also list an empirical
value of the skin friction coefficient obtained from Dean’s
correlation for a turbulent flow over a flat plate for the same
Reynolds number. The difference between the theoretical and
computed values constitutes less than 4% for all the calcu-
lated cases. It can be noticed that the computed values of the
skin friction coefficient are systematically larger than the the-
oretical values. The fact that the theoretical value for the skin
friction coefficient on a flat plate is closer to the Dean’s
correlation than the computed value suggests that erroneous
estimates come from Eq. (64) and not from the theoretical
formula (60). In fact, estimating skin friction with Eq. (64)
involves the knowledge of the exact slope of the velocity
profile next to the wall, and it is well known that the near-
wall quantities (and especially their gradients) are the most
susceptible to approximation and modeling errors. It is be-
lieved that estimating skin friction by integrating Reynolds
stresses via Eq. (60) (Reynolds stresses are fairly well
predicted by LES, see comparison with DNS in Fig. 13
below and in Refs. 25 and 26) might be in general a more
accurate way of extracting skin friction information from the
simulations than direct computation via Eq. (64). Nonethe-
less, overestimation of skin friction values by Eq. (64) results
in a systematic (and not irregular) error, and when the change
in skin friction coefficient with the change in surface
geometry is considered, the difference between the two esti-
mation methods is very small (which is documented further
in Table VI).

TABLE II. Comparison between theoretical and computed values of skin friction coefficient.

Difference (€)

Surface Theoretical (CT“‘) Computed (Ff“’mp) (%) Dean’s correlation
Flat 8.59x 1073 8.80x 1073 2.4 8.49x 1073
Straight T 8.08 X 1073 8.40x 1073 3.8

Short waves T 8.36X 1073 8.54 X 1073 2.1

Long waves T 8.02x 1073 8.28x 1073 3.1

Straight B 7.63x1073 7.80x 1073 22

Short waves B 7.83% 107 8.05x 1073 2.7

Long waves B 7.46 X107 7.59%x 1073 1.7
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TABLE IV. Constituent contribution of different dynamical effects into skin friction, value of each term in Eq.

(60).

Surface Bulk (C?ﬂ,) Asymmetric (CTH) Turbulent (CT,) Total (CT)
Flat 2.20% 1073 0.008 X 1073 6.39x 1073 8.59 X 1073
Straight T 2.41x1073 0.008 X 1073 5.66x 1073 8.08 X 1073
Short waves T 2.43x 1073 0.20x 1073 5.73x 1073 8.36 X 1073
Long waves T 2.43x1073 0.10x 1073 5.49x 1073 8.02x 1073
Straight B 2.36x 1073 0.03x 1073 5.24x 1073 7.63%x 1073
Short waves B 238X 1073 0.11x1073 5.34%x 1073 7.83%x 1073
Long waves B 2.38%1073 0.006x 1073 5.07x1073 7.46 %1073

4. Constituent contributions

It is seen from Table III that skin friction for riblet sur-
faces is smaller than skin friction for a flat surface for all the
calculated cases, proving that riblets are an effective method
of skin friction reduction provided that riblet geometry pa-
rameters are chosen correctly. Wavy riblets were introduced
in an attempt to achieve additional skin friction reduction
benefits over straight riblets.!”* Table III shows that these
additional benefits are achieved for wavy riblets with longer
wavelengths but are not achieved for short wavy riblets. The
current theoretical approach allows us to give more insight
into the skin friction reduction mechanism for riblet-covered
surfaces and explain the difference in skin friction reduction
properties of short and long wavy riblets by looking at the
quantitative contribution of different dynamical effects to the
total skin friction coefficient.

The constituent contribution of different dynamical ef-
fects to the skin friction is shown in Table IV and represents

the value of each individual term in Eq. (60) (bulk Cbe,

asymmetric CTfa, turbulent CTf,, and total CTf—their sum). In
order to better understand the relative effect of each term, we
also look at the ratio of each component (and their sum) to

the total skin friction coefficient of a flat surface C_'ff in Table
V. In the remainder of this section, we analyze each term
contributing to the skin friction coefficient in more detail in
order to understand the differences in the skin friction reduc-
tion properties between the different riblet surfaces.

5. Bulk contribution

The first term in Eq. (60), bulk contribution, is calculated
as

—  2UAST

= ReU*As’ (65)

where

!
iy -
o Acosf

[cf. Egs. (60) and (B2)]. Since for both straight and wavy
riblets the y-z cross-sectional area Ay is the same at every
streamwise location, it was taken out of the integral in x.

a. Straight riblets. For straight riblets, the integral
I=f31/()\ cos B)dx=1 and, therefore, Eq. (65) becomes

= _2UAs

= RelU’As’ (66)

Laminar flow over straight riblets (which are streamwise-
homogeneous surfaces with symmetric cross-section) is sym-
metric with respect to the x-y center plane. Therefore, the
asymmetric term for a laminar flow over straight riblets is
identically zero, since symmetric positive and negative con-
tributions cancel each other during cross-sectional averaging.
Furthermore, turbulent contribution in a laminar flow is iden-
tically zero, and bulk term defined by Eq. (66) is the only
contribution to the laminar skin friction coefficient. There-

TABLE V. Ratio of each term in Eq. (60) to the total flat plate skin friction coefficient.

Surface Bulk (C?fb/(/?_/ﬁ Asymmetric ((?a/6='f0 Turbulent (C?f,/(/?/ﬁ Total (C_'_f/ C; /)
Flat 0.26 0 0.74 1
Straight T 0.28 0 0.66 0.94
Short waves T 0.28 0.02 0.67 0.97
Long waves T 0.28 0.01 0.64 0.93
Straight B 0.28 0 0.61 0.89
Short waves B 0.28 0.01 0.62 0.91
Long waves B 0.28 0 0.59 0.87
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TABLE VI. Skin friction reduction value Ry.

Theoretical Computed
Surface (%) (%)
Straight T 6 5
Short waves T 3 3
Long waves T 7 6
Straight B 11 11
Short waves B 9 9
Long waves B 13 14

fore, for symmetric surfaces, the bulk contribution represents
a skin friction coefficient which would develop in a laminar

flow over the same surface, C C flam-

Equations (59) and (66) pr0v1de a way of exact compu-
tation of the skin friction coefficient in a laminar flow for
symmetric streamwise-homogeneous surfaces based on
purely geometrical considerations without performing the
flow calculations. [Remember that Eq. (59) is exact for lami-
nar streamwise-homogeneous flows.] Thus, according to Eq.
(66), the ratio of the laminar skin friction coefficient on a

surface with straight riblets CTﬂ’am to a laminar skin friction

coefficient on a flat surface C/f, = can be estimated as

(’?f{am/ C?f]l(am = AlLA (67)

if (UbAz)/(ReUfs) is the same for both surfaces. According
to Eq. (53), A’=8%/3 for a flat surface. Calculating A’ with

Eq. (59) allows us to compute the ratio C; Nam/ Cl. fam- Variation

in Cﬂam/Cﬂam with riblet spacing s/¢& calculated with Eq.
(67) is shown in Fig. 9 for two triangular riblet surfaces with
different ridge angles « and for two knife-blade riblet sur-
faces with different height-to-spacing ratios i/s. We chose
height-to-spacing ratios //s for knife-blade riblets to be
equal to the h/s ratios of the triangular riblets. Note that
although we vary s/, the ratio As/s, and so
(UAs)/ (ReU s), stay the same, since Ay=04s and & is not

varied. Values of Cﬂam/Cﬂam obtained by Choi et al.”®
straight triangular riblets from numerical solution of govern-
ing flow equations are also shown for comparison. They
agree well with the values found with the proposed geometri-
cal method. It is seen that in a laminar flow skin friction on
a riblet surface is larger than that on a flat surface. The rea-
son for that is the larger wetted surface area of a riblet sur-
face compared to a flat surface, which can be characterized
by a parameter L,,/s (L, is the length of the wall segment
d%.,,). Values of L,,/s are listed in a caption to Fig. 9 for each
riblet case, L,,/s=1 for a flat surface. It is seen that skin
friction is indeed increased with the increase in L,,/s. It is
interesting to note that triangular riblets with a=60° and
knife-blade riblets with i/s=0.5, both having the same value
of L,/s=2, show almost identical skin friction, suggesting
that skin friction drag in a laminar flow over straight riblets
indeed scales with L, /s.

Since Cfb Cﬂdm for symmetric surfaces, the ratio of

bulk terms Cfb/C/; from turbulent flow simulations should
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FIG. 9. Variation in skin friction ratio C_‘ﬂ’am/C_‘ am fOr straight riblets with
respect to a riblet spacing. Black lines, triangular riblets, Eq. (67): solid line,
a=45°,h/s=0.5, L,,/s=1.4; dashed line, a=60°, h/5s=0.866, L,,/s=2. Grey
lines, knife-blade riblets, Eq. (67): solid line, h/s=0.5, L, /s=2; dashed line,
h/s=0.866, L, /s=2.732. Symbols: A, triangular riblets with a=45°, Choi
et al. (Ref. 28); O, triangular riblets with @=60°, Choi et al. (Ref. 28); +,
(,Tf;/ (,Tfé, triangular riblets with a=60°, current LES; X, CT/I’,/ (,ng, knife-
blade riblets with 4/5=0.5, current LES.

equal to C?ﬂ’am/c? am for straight riblets. Indeed we get the

ratio of ng/af =1.1 for straight triangular riblets (a

=60°, s/6=0.1164) and Cfb/Cfb—l 07 for straight knife-
blade riblets (h/5=0.5, s/6=0.0908), which, as can be seen
from Fig. 9, does conform to the corresponding ratio of the
laminar coefficients.

b. Wavy riblets. For wavy riblets, the integral
T=[31/(\ cos B)dx is no longer unity. But for the case of
periodic sinusoidal waves defined by Eq. (54) the integral 7
can be taken analytically. Indeed, from Egs. (54) and (55) it
follows that

2
o8 B0 %B(x) = \/(?) cosz(%ﬂx> +1 (68)

and

S|
I:f —dx
o Ncos
2 2 2 /2
=—\/($)+1f VT = &2 sin? ddd
m 0

=2;E<k,z), (69)

T COS Brax 2

where B,,.c=arctan(2ma)/\, k=sin By E(k,m/2) is a com-
plete elliptic integral of the second kind, and a substitution
®=(27x)/\ was made to evaluate the integral in Eq. (69).
Since 7%Y>1 and 7°"¥&"= [, the bulk term defined by
Eq. (65) is always greater for the wavy riblets than for the
straight riblets of the same geometry, and their ratio obeys

C=.f§/avy/aztraight — Iwavy’ (70)

which is confirmed by Table IV. Note that the asymmetric
term is not necessarily zero for a laminar flow over wavy
riblets, since the flow is no longer symmetric. Therefore, the
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FIG. 10. (Color online) Streamwise dependence of asymmetric contribution
’ZZ(x) for straight and wavy riblets. Laminar case: —-—, straight; A, short
waves; O, long waves. Turbulent case: , straight; — — —, short
waves; — — —, long waves. (a) Triangular riblets. (b) Knife-blade riblets.

bulk term does not correspond exactly to the laminar skin
friction coefficient for surfaces invoking asymmetric flow.
However, since the asymmetric term is usually small in a

laminar flow, the bulk term will be close to CTﬂam even for
asymmetric cases. In a turbulent flow, on the other hand, the
bulk term constitutes only about a quarter of the total skin

friction coefficient Ff for both straight and wavy triangular
and knife-blade riblets, as can be seen from Table V.

6. Asymmetric contribution

The asymmetric contribution

— 1 AT
Cfa =3 dx (71)
U;As\Jy cos B

is due to the flow asymmetry and can be present in both
laminar and turbulent cases if the flow is asymmetric. For
periodic riblets, where the asymmetric term 7, is defined by
Eq. (62), it represents the effect of a mean crossflow asym-
metry on skin friction. Streamwise variation in the local nor-
malized asymmetric term 77(x)=7,(x)/ [UfAs cos B(x)] is
plotted in Fig. 10. The laminar case is also plotted for refer-
ence.

a. Straight riblets. For the straight riblets, the asymmet-
ric term 77(x) is zero at each streamwise location both for the
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FIG. 11. (Color online) Cross-sectional view of the local asymmetric term
I;r(x, v,z) for straight riblets in a turbulent case. Solid lines, positive values;
dashed lines, negative values. Contour increment: 0.01. (a) Triangular rib-
lets. (b) Knife-blade riblets.

laminar and turbulent cases (the slight deviation from zero in
the case of turbulent straight knife-blade riblets most likely
comes from numerical errors) since, as discussed earlier,
symmetric positive and negative crossflow contributions can-
cel each other during cross-sectional averaging. Cross-
sectional symmetry of the asymmetric term for straight rib-
lets in a turbulent case can be viewed in Fig. 11, where the
integrand of Eq. (61) normalized by U?As cos B/As,

_ A—E (0]
T, (x,,2) = A cos ﬁ(x)(v(n P)
- y( 77))2(_ I;,r(x’y’z))’ (72)
is plotted.

b. Wavy riblets. For the wavy riblets, the asymmetric
term 7,,(x) is no longer zero at each streamwise location due
to the mean crossflow asymmetry and a lack of cancellation.
Streamwise dependence of the asymmetric term resembles
periodic oscillations with about twice the frequency of riblet
shape oscillations and the peak values of 1 X 1072 in the tur-
bulent case and 0.1 X 1073 in the laminar case. Note that as
mentioned earlier, the local asymmetric term is not identi-
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FIG. 12. (Color online) Cross-sectional view of the local asymmetric term
T .(x,y,z) for short wavy riblets in a turbulent case. Solid lines, positive
values; dashed lines, negative values. Contour increment: 0.1. (a) Triangular
riblets, x/A~0. (b) Triangular riblets, x/\~1/4. (c) Knife-blade riblets,
x/N~0. (d) Knife-blade riblets, x/\ ~1/4.

cally zero in the laminar case for wavy riblets, although it is
significantly smaller than its turbulent counterpart. As seen
from Fig. 10, the asymmetric term oscillations resemble per-
fect sinusoidal waves for the laminar wavy cases resulting in
a zero streamwise average. However, for turbulent cases, the
curves are shifted upward resulting in a slightly positive
streamwise-averaged value of the asymmetric term. The up-
ward shift is more pronounced for short oscillation wave-
lengths and it is smaller for longer oscillation wavelengths.
Also, the upward shift seems to be larger for triangular rib-
lets resulting in 2% and 1% of the asymmetric contribution
for short and long wavelengths, respectively, while it is only
1% and 0% for knife-blade riblets. This might be connected
to the fact that the oscillation slope S,,,,=9.6° is smaller for
the knife-blade riblets than S,,,,=11.3° for the triangular rib-
lets. It is hypothesized that the larger value of the asymmet-
ric term for smaller wavelengths is associated with the higher
excitation of a riblet boundary layer when the oscillation
period is too short. A cross-sectional view of the local asym-
metric term 77, (x,y,z) defined by Eq. (72) is plotted in Fig.
12 for triangular and knife-blade short wavy riblets in the
turbulent case at two streamwise locations: x/A=0 corre-
sponding to the minimum 7, value and x/\=1/4 corre-
sponding to the maximum value. When x/A=0, the mean
spanwise velocity in the riblet boundary layer is maximum,
and local values of the asymmetric term 7, are also the
largest. When x/\=1/4, the mean spanwise velocity is zero
since the mean flow in a riblet boundary layer is parallel to
the incoming stream, and local values of the asymmetric
term are the smallest. Note that 7}, is actually maximum
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FIG. 13. Distribution of turbulent shear stress —u’v'/ U2 across the channel.
Black solid lines, triangular riblets; grey solid lines, knife-blade riblets;
black dashed-dotted line, above a flat surface. Symbols, DNS of Choi et al.
(Ref. 20): O, triangular riblets, above a riblet tip; /A, above a flat plate.

when the local values of 77, are the smallest (at x/\
=1/4,3/4,...), and vice versa, showing that it is the cross-
sectional average and not the local values that determine the
contribution of asymmetric effects to the spanwise-averaged
skin friction drag. A cross-sectional view of 7}, for long
wavelengths is similar and is not plotted here.

7. Turbulent contribution
Turbulent component

C, ! fk %, (73)
e U2As\J, cos B !

is definitely the major contribution to the skin friction coef-
ficient in a turbulent flow and is responsible for almost three
quarters of its total value (see Table V).

a. Straight riblets. The turbulent contribution is signifi-
cantly lower for a flow over straight riblets than for a flow
over a flat plate. Knife-blade riblets show larger reduction in
turbulent contribution with respect to a flat plate (13%) than
triangular riblets (8%), as seen from Tables IV and V. Dis-
tribution of the streamwise-averaged turbulent shear stress
—u'v'/U? over the vertical lines across the channel cross-
section is shown in Fig. 13 for straight triangular and knife-
blade riblets in comparison with the shear stress above a flat
surface. Data from DNS of Choi et al.* for straight triangu-
lar riblets of a similar configuration with Re=2800 are also
plotted for reference. We plot the turbulent stress values nor-
malized by the centerline velocity U,, and not by the refer-
ence velocity U,=U,, to conform to the data of Choi et al.”
It is clearly seen that turbulent shear stress is suppressed over
the entire range of y/é for riblet surfaces with respect to a
flat surface and that the knife-blade riblet surface exhibits
further reduction in —u'v’ over the triangular riblet surface.

Turbulence reduction by straight riblets of favorable ge-
ometry was previously documented in the literature.*’
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FIG. 14. (Color online) Streamwise dependence of turbulent contribution
T} (x) for straight and wavy riblets. , Straight riblets; — — —, short
wavy riblets; — — —, long wavy riblets. (a) Triangular riblets. (b) Knife-blade
riblets.

Namely, it was shown that riblets are able to displace coher-
ent streamwise vortices, which naturally form in the turbu-
lent boundary layer, away from the wall, thus leading to a
decrease in turbulent momentum transfer and turbulent shear
stress near the wall.**** Tt is also a known fact that knife-
blade riblets represent the most efficient geometry among all
other riblet surfaces for displacing coherent vortices away
from the wall’ and thus exhibit the largest values of turbu-
lence reduction.

b. Wavy riblets. For wavy riblets with long wavelengths,
both for triangular and knife-blade cases, further turbulent
reduction with respect to the corresponding straight riblet
surface is observed resulting in 2% decrease in turbulent
contribution to skin friction (see Tables IV and V). However,
for the short wavelengths, a slight increase in turbulent con-
tribution (by 1%) is documented both in triangular and knife-
blade cases. Streamwise variation in the local turbulent term
T (x)=T,(x)/ [Uf.As cos B(x)] for straight and wavy riblets is
plotted in Fig. 14. As expected, streamwise variation for the
straight riblets is practically absent (slight variation for
straight knife-blade riblets is likely due to numerical uncer-
tainties). The situation is quite different for wavy riblets. For
the short riblets, both triangular and knife-blade, the same
well-defined pattern is observed, where the turbulent term
gradually rises to its maximum value reached at every half-
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period, and then drops abruptly to its minimum value. As
compared to the straight riblets, the overall levels of the tur-
bulent component 7;(x) are reduced for the long wavy
riblets, whereas maximum values of 77(x) are larger and
minimum values are smaller for the short wavy riblets than
the corresponding straight riblet values. It is possible that for
wavy riblets with sufficiently large wavelength, by analogy
with a spanwise-oscillating wall, spanwise motion in a wavy-
riblet boundary layer leads to a spanwise displacement of
coherent vortices with respect to the low-speed streaks in
addition to their vertical displacement, which violates their
spatial coherence, weakens the near-wall burst activity, and
reduces turbulent shear stress levels even further with respect
to nonoscillating riblets. It is most likely that for short wave-
lengths the oscillations are too rapid and there is not enough
time for the turbulence to reach a local equilibrium state, so
that the turbulence fluctuations show large streamwise inter-

mittency and the streamwise-averaged contribution C_'f, is in-
creased compared to the straight riblets. In fact, the optimum
oscillation frequency for skin friction reduction with span-
wise wall oscillation is reported to be about 7= 100.10-30:31
If, for a riblet boundary layer, we estimate convection veloc-
ity to be ¢*=10 at y*=10 (Ref. 32) (where the spanwise
motion due to the protrusion of riblets is maximum), the
oscillation period for the long wavy riblets with A*= 1000 is
T*=\"/c¢*=100, close to the reported wall-oscillation opti-
mum, so that the favorable effects of spanwise motion on
skin friction reduction are the largest. For the short wavy
riblets with A*=600 the frequency is larger, corresponding
to a smaller period of T* =60, for which skin friction reduc-
tion with spanwise wall motion is much smaller,”® which
might be explained by similar nonequilibrium effects in a
spanwise-oscillating wall layer as those observed in the cur-
rent study for short wavy riblets.

8. Skin friction drag reduction

The skin friction drag reduction value defined as
R;=(C/-C/)/C/, predicted by the theoretical formula [Eq.
(60)] and by direct computation [Eq. (64)], is cited in Table

VI for the six calculated cases. Here C{ is the skin friction

coefficient of a flat surface and CTf’ is the skin friction coef-
ficient of a riblet surface. As discussed above, although the

values of Ff"mp obtained from Eq. (64) are larger by 2%-4%

than the corresponding values CTfTh predicted by the theoret-
ical formula (cf. Table III), this seems to be a systematic
error, and the values of change in skin friction with the
change in surface geometry (skin friction drag reduction) dif-
fer much less (see Table VI). Decomposition of the skin fric-
tion coefficient into constituent contributions discussed
above allows us to explain the skin friction reduction mecha-
nism of straight and wavy riblets and clarify why short and
long wavy riblets have such different skin friction reduction
properties.

a. Straight riblets. For the straight riblets (cf. Table V),
two terms come into play: the bulk term and the turbulent
term. Although the bulk term is increased slightly from 26%
to 28% for straight riblets as compared to a flat surface,
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significant reduction in the turbulent term (from 74% to 66%
for triangular riblets and to 61% for knife-blade riblets) over-
comes the 2% increase in the bulk term resulting in 6% skin
friction reduction for triangular riblets and 11% skin friction
reduction for knife-blade riblets. Those values are in good
agreement with the skin friction reduction values published
in the open literature for those configurations. Furthermore,
the accepted hypothesis that skin friction on a straight riblet
surface is reduced due to a favorable interaction of riblets
with the near-wall turbulence is confirmed, as well as the fact
that knife-blade riblets possess smaller skin friction than rib-
lets with triangular cross-section because they are more ef-
fective in reducing the near-wall turbulence.

b. Wavy riblets. For the wavy riblets, the situation is
slightly more complicated, since a delicate balance between
small changes in all the three terms determines a positive or
negative increment of skin friction with respect to straight
riblets. Indeed, the bulk contribution is very slightly in-
creased for wavy riblets due to the bulk flow oscillations and
nonunity of cos ; the asymmetric contribution is also
slightly increased (especially for the short wavelengths); but
the turbulent contribution is slightly decreased for the long
wavelengths and slightly increased for the short wave-
lengths. As a result, long wavy riblets exhibit smaller C;
values than their straight riblet counterparts, while short
wavy riblets exhibit larger C; values. For long wavy riblets,
a skin friction increase due to the asymmetric term is very
small (1% for triangular, ~0% for knife-blade), whereas the
decrease in turbulence intensity by spanwise oscillations is
2% with respect to straight riblets, resulting in a positive net
effect of riblet oscillations on skin friction reduction. How-
ever, if the wavelength of the oscillations is too small (or
frequency is too high), smooth transition of the flow between
the different phases of oscillation no longer occurs, and the
local turbulence does not have enough time to adjust to a
change in the spanwise flow direction and is constantly in an
excited and locally nonequilibrium state. This leads to asym-
metries in the streamwise distribution of the asymmetric
term and large streamwise fluctuations of the turbulent term
seen in Figs. 10 and 14. Thus, increase in both the asymmet-
ric contribution (by 1%—2%) and the turbulent contribution
(by 1%) occurs in short wavy riblets, resulting in a higher
skin friction coefficient than that over straight riblets. To
summarize, introducing spanwise oscillations to the conven-
tional (straight) riblet shape does produce additional skin
friction reduction benefits, provided the wavelength of oscil-
lations is not too small.

Promising results on skin friction reduction by long
wavy riblets suggest that it might be beneficial to use wavy
riblet surfaces for drag reduction in practical applications.
One has to be careful, however, since pressure drag becomes
nonzero for wavy surfaces, since the local surface normal is
no longer always perpendicular to the free-stream flow direc-
tion. It was estimated by Peet et al.'® that the pressure drag
for the wavy riblet configurations considered in this paper is
about 2% (it was shown to be proportional to the square of
the oscillation slope tan® B,,,, and not depending on the
cross-sectional shape). Parametric study of drag reduction
with wavy riblets versus oscillation parameters revealed that
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total drag reduction benefits (accounting for both skin fric-
tion and pressure drag) of at least 3% compared to straight
riblets are still possible for optimum configurations.18 Wavy
riblets can therefore be a promising method of achieving
high values of drag reduction by simple and inexpensive
geometrical surface modifications. Benefits might be even
larger for higher Reynolds numbers relevant to practical
applications.

IV. CONCLUSIONS

An analytical formula is derived for the turbulent skin
friction coefficient on geometrically complex surfaces,
whose shape satisfies certain conditions. Analytical expres-
sion for the skin friction coefficient is thus given for stream-
wise and spanwise homogeneous surfaces of any shape, as
well as some more complex configurations including wavy
patterns. The derivation consists of integrating the governing
equations of motion and leads to a closed-form expression
between the skin friction coefficient and statistical informa-
tion in the flow above the surface. The expression shows that
contribution to skin friction can be decomposed into several
terms: bulk, asymmetric, pressure, transient, and turbulent.
The derived expression can be particularly useful for analyz-
ing the skin friction drag reduction properties of various sur-
faces. The analytical formula is validated for a flat plate and
for a surface covered with straight and wavy riblets of trian-
gular and knife-blade cross-sections by comparing skin fric-
tion computed directly as an integral of the wall velocity
gradient with the prediction of the formula. A difference of
no more than 4% is reported for all the simulated cases,
which comes from a systematic error in LES estimation of
the local wall velocity gradients. Analysis of different dy-
namical effects contributing to the total skin friction value
for riblet-covered surfaces shows the following:

(1) The bulk contribution is slightly larger for straight riblet
surfaces than for a flat surface, and even larger for wavy
riblet surfaces.

(2) The asymmetric contribution is zero for a flat plate and
for straight riblets, but not zero for wavy riblets in both
laminar and turbulent cases. The asymmetric contribu-
tion is generally larger for short riblets versus long rib-
lets and for triangular riblets versus knife-blade riblets.
In the turbulent case, the maximum value is 2% for short
triangular riblets, and the minimum value is ~0% for
long knife-blade riblets. The percentage signifies the
fraction of each particular term with respect to the total

skin friction of a flat surface, CT,J

(3) The turbulent contribution is reduced by 8% for straight
triangular riblets as compared to a flat surface, with even
further reduction of up to 13% for straight knife-blade
riblets. Further reduction by 2% is documented for long
wavy riblets as compared to the straight riblets with the
same cross-section, but an increase of 1% is observed
for short wavy riblets. The turbulent term exhibits large
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fluctuations with respect to a streamwise coordinate for
short wavy riblets, and those fluctuations are much re-
duced for long wavy riblets.

Skin friction reduction values of 6% and 11% for
straight triangular and knife-blade riblets, respectively, are
documented and are in agreement with the published
literature.”*” It is found that further skin friction reduction is
achieved for wavy riblets with large oscillation wavelength
due to additional turbulence suppression by spanwise mo-
tion. The mechanism for the additional turbulence suppres-
sion most likely consists of tilting streamwise vortices and
violating their spatial coherence with respect to the low-
speed streaks, similar to the effects found in a spanwise-
oscillating wall.' If the oscillation wavelength is too small,
however, skin friction is increased with respect to the straight
riblets due to nonequilibrium effects leading to large stream-
wise fluctuations of the turbulent term and increase in both
the turbulent and asymmetric terms. Knife-blade riblets are
confirmed to be more efficient in skin friction reduction than
triangular riblets for a straight riblet configuration. Knife-
blade riblets are also more efficient in bringing out the ben-
efits from a spanwise shape oscillation: knife-blade wavy
riblets show larger values of skin friction reduction with re-
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spect to straight riblets compared to triangular wavy riblets.

Wavy riblets represent a promising way of reducing skin
friction drag on the surfaces in contact with a turbulent flow
at practically no cost and they are more efficient than straight
riblets. Wavy riblets might work even better for higher Rey-
nolds numbers. Even when pressure drag is taken into ac-
count, the total drag reduction benefits of several percent in
comparison with straight riblets can be achieved for opti-
mum conﬁgumtions.18 The wavelength of the oscillations
should be carefully chosen, however, and should not be made
too small.
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APPENDIX A: LOCAL SKIN FRICTION DRAG

In this appendix, we show that the local skin friction
drag defined by Eq. (3) can be expressed by Eq. (4). To do
that, we extend (Vo +(V® )i i as

du dv du Jw Jdu T
2— —+— —+—
ox ox dy Jdx 9z !
nx
- du Jv Jdv dw  Jdv
Voo+(VeosDi-i=| | —+— 2— —+—||n, -0
dy ox dy dy Iz ’
n, 0
du Jdw dv  Iw aw
—+— —+— 2—
dz  dx dz dy dz
du du du du dv aow
=\ Tttt |+ g+t n,+—n,
ox ady 0z ox ox Jx
ou JIU-iA) Jdu dv,

which, if substituted to Eq. (3), leads to Eq. (4).

APPENDIX B: TRANSFORMATION OF TERMS

In this appendix, we spell out the formulas obtained for
the four terms of Eq. (50) after the double integration
I gmpdyf Jdy and summation over d{—0 is applied to this
equation. As before, y denotes the local variable along the
integration contour, and dvy its differential. We will also be
using the notations y(7) and y({) to distinguish the integra-
tion along 7 or { lines, and dy(7), dy({) referring to their

(A1)

differentials. The transformation of the four terms can be
written as follows:

ntop i
lim > dy(n) f dy(n)
di—0 qr Jo 0
y f {W[y( 10 _dtn 5)}
dao, s AE

{zw ”lop
= f f [H7P) = v(n)]
4 Y0

dyg,) A0
N Az

}dv(n) =A,

(B1)

X{W[V(é“w)]
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Integration by parts was used to transform multiple integra-
tions over 7 to a single integration in the derivation of Eqs.
(B1), (B3), and (B4). U,, in Eq. (B2) is the (nondimensional)
bulk velocity.
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